Skip to content

TMIN

The TMIN node is based on a numpy or scipy function.The description of that function is as follows: Compute the trimmed minimum. This function finds the miminum value of an array 'a' along the specified axis, but only considering values greater than a specified lower limit.Params:a : array_likeArray of values.lowerlimit : None or floatValues in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.axis : int or NoneAxis along which to operate. Default is 0. If None, compute over the whole array 'a'.inclusive : {True, False}This flag determines whether values exactly equal to the lower limit are included. The default value is True.nan_policy : {'propagate', 'raise', 'omit'}Defines how to handle when input contains nan. The following options are available (default is 'propagate'): 'propagate' : returns nan 'raise' : raises an error 'omit' : performs the calculations ignoring nan valuesReturns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from collections import namedtuple
from typing import Literal

import scipy.stats


@flojoy
def TMIN(
    default: OrderedPair | Matrix,
    lowerlimit: float = 0.1,
    axis: int = 0,
    inclusive: bool = True,
    nan_policy: str = "propagate",
) -> OrderedPair | Matrix | Scalar:
    """The TMIN node is based on a numpy or scipy function.

    The description of that function is as follows:

        Compute the trimmed minimum.

        This function finds the miminum value of an array 'a' along the specified axis, but only considering values greater than a specified lower limit.

    Parameters
    ----------
    a : array_like
        Array of values.
    lowerlimit : None or float, optional
        Values in the input array less than the given limit will be ignored.
        When lowerlimit is None, then all values are used.
        The default value is None.
    axis : int or None, optional
        Axis along which to operate.
        Default is 0.
        If None, compute over the whole array 'a'.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the lower limit are included.
        The default value is True.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):
        'propagate' : returns nan
        'raise' : raises an error
        'omit' : performs the calculations ignoring nan values

    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """

    result = scipy.stats.tmin(
        a=default.y,
        lowerlimit=lowerlimit,
        axis=axis,
        inclusive=inclusive,
        nan_policy=nan_policy,
    )

    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))

    return result

Find this Flojoy Block on GitHub