Skip to content

BINOM_TEST

The BINOM_TEST node is based on a numpy or scipy function.The description of that function is as follows: Perform a test that the probability of success is p. Note: 'binom_test' is deprecated; it is recommended that 'binomtest' be used instead. This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is 'p'.Params:x : int or array_likeThe number of successes, or if x has length 2, it is the number of successes and the number of failures.n : intThe number of trials. This is ignored if x gives both the number of successes and failures.p : floatThe hypothesized probability of success. 0 <= p <= 1. The default value is p = 0.5.alternative : {'two-sided', 'greater', 'less'}Indicates the alternative hypothesis. The default value is 'two-sided'.Returns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from collections import namedtuple
from typing import Literal

import scipy.stats


@flojoy
def BINOM_TEST(
    default: OrderedPair | Matrix,
    n: int = 2,
    p: float = 0.5,
    alternative: str = "two-sided",
) -> OrderedPair | Matrix | Scalar:
    """The BINOM_TEST node is based on a numpy or scipy function.

    The description of that function is as follows:

        Perform a test that the probability of success is p.

    Note: 'binom_test' is deprecated; it is recommended that 'binomtest' be used instead.

        This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is 'p'.

    Parameters
    ----------
    x : int or array_like
        The number of successes, or if x has length 2, it is the
        number of successes and the number of failures.
    n : int
        The number of trials.  This is ignored if x gives both the
        number of successes and failures.
    p : float, optional
        The hypothesized probability of success. 0 <= p <= 1.
        The default value is p = 0.5.
    alternative : {'two-sided', 'greater', 'less'}, optional
        Indicates the alternative hypothesis.
        The default value is 'two-sided'.

    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """

    result = scipy.stats.binom_test(
        x=default.y,
        n=n,
        p=p,
        alternative=alternative,
    )

    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))

    return result

Find this Flojoy Block on GitHub