PINV
The PINV node is based on a numpy or scipy function.The description of that function is as follows:
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all **large** singular values.
.. versionchanged:: 1.14
Can now operate on stacks of matricesParams:a : (..., M, N) array_likeMatrix or stack of matrices to be pseudo-inverted.rcond : (...) array_like of floatCutoff for small singular values.
Singular values less than or equal to "rcond * largest_singular_value" are set to zero.
Broadcasts against the stack of matrices.hermitian : boolIf True, "a" is assumed to be Hermitian (symmetric if real-valued), enabling a more
efficient method for finding singular values.
Defaults to False... versionadded : : 1.17.0Returns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import flojoy, Matrix, Scalar
import numpy as np
from collections import namedtuple
from typing import Literal
import numpy.linalg
@flojoy
def PINV(
default: Matrix,
rcond: float = 1e-15,
hermitian: bool = False,
) -> Matrix | Scalar:
"""The PINV node is based on a numpy or scipy function.
The description of that function is as follows:
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all **large** singular values.
.. versionchanged:: 1.14
Can now operate on stacks of matrices
Parameters
----------
a : (..., M, N) array_like
Matrix or stack of matrices to be pseudo-inverted.
rcond : (...) array_like of float
Cutoff for small singular values.
Singular values less than or equal to "rcond * largest_singular_value" are set to zero.
Broadcasts against the stack of matrices.
hermitian : bool, optional
If True, "a" is assumed to be Hermitian (symmetric if real-valued), enabling a more
efficient method for finding singular values.
Defaults to False.
.. versionadded:: 1.17.0
Returns
-------
DataContainer
type 'ordered pair', 'scalar', or 'matrix'
"""
result = numpy.linalg.pinv(
a=default.m,
rcond=rcond,
hermitian=hermitian,
)
if isinstance(result, np.ndarray):
result = Matrix(m=result)
else:
assert isinstance(
result, np.number | float | int
), f"Expected np.number, float or int for result, got {type(result)}"
result = Scalar(c=float(result))
return result