Skip to content

WAVEPACKET

The WAVEPACKET node approximates the behaviour of a 1D Gaussian wavepacket in an infinite-well potential box.This example uses the Crank-Nicolson Method to solve the 1D Schrodinger equation. Further reading: http://staff.ustc.edu.cn/~zqj/posts/Numerical_TDSE/Params:L_box : floatThe width of the box in Bohr lengths.center : floatThe center of the initial wavepacket.momentum : floatThe momentum of the initial wavepacket.sigma : floatThe width of the initial wavepacket.dt : floatTime steps in atomic units, 1 a.u. = 24.188 as.Returns:out : OrderedPairThe most recent wavepacket.
Python Code
import numpy as np
import scipy.sparse as spa
from scipy.sparse.linalg import splu
from flojoy import flojoy, OrderedPair, SmallMemory, DefaultParams
from typing import Optional


def gaussian_wavepacket(x, x0, k, sigma=0.1):
    # One dimensional Gaussian wavepacket.
    x = np.asarray(x)
    g = np.sqrt(1 / np.sqrt(np.pi) / sigma) * np.exp(-((x - x0) ** 2) / 2 / sigma**2)

    return np.exp(1j * k * (x - x0)) * g


def CrankNicolson(psi, V, x, dt):
    # Crank-Nicolson method for the 1D Schrodinger equation.

    # No. of spatial grid points
    J = x.size - 1
    dx = x[1] - x[0]

    # the external potential
    V_e = spa.diags(V)
    # the kinetic operator
    O_k = np.ones(J + 1)
    T = (-1 / 2 / dx**2) * spa.spdiags([O_k, -2 * O_k, O_k], [-1, 0, 1], J + 1, J + 1)

    # the two unitary matrices
    U2 = spa.eye(J + 1) + (1j * 0.5 * dt) * (T + V_e)
    U1 = spa.eye(J + 1) - (1j * 0.5 * dt) * (T + V_e)
    # splu requires CSC matrix format for efficient decomposition
    U2 = U2.tocsc()
    LU = splu(U2)

    b = U1.dot(psi)
    PSI_t = LU.solve(b)

    return PSI_t


memory_key = "WAVEPACKET"


@flojoy(inject_node_metadata=True)
def WAVEPACKET(
    default_params: DefaultParams,
    default: Optional[OrderedPair] = None,
    L_box: float = 20,
    center: float = 0,
    momentum: float = 5,
    sigma: float = 1,
    dt: float = 0.2,
) -> OrderedPair:
    """The WAVEPACKET node approximates the behaviour of a 1D Gaussian wavepacket in an infinite-well potential box.

    This example uses the Crank-Nicolson Method to solve the 1D Schrodinger equation.

    Further reading:
    http://staff.ustc.edu.cn/~zqj/posts/Numerical_TDSE/

    Parameters
    ----------
    L_box : float
        The width of the box in Bohr lengths.
    center : float
        The center of the initial wavepacket.
    momentum : float
        The momentum of the initial wavepacket.
    sigma : float
        The width of the initial wavepacket.
    dt : float
        Time steps in atomic units, 1 a.u. = 24.188 as.

    Returns
    -------
    OrderedPair
        The most recent wavepacket.
    """

    node_id = default_params.node_id

    psi_t = SmallMemory().read_memory(node_id, memory_key)
    if psi_t is None:
        initialize = True
    elif isinstance(psi_t, np.ndarray):
        initialize = False
    else:
        raise TypeError("Error loading object from SmallMemory.")

    # Box parameters.
    xmin = -L_box / 2.0  # left boundary
    J = 999  # No. of spatial grid points
    x = np.linspace(xmin, xmin + L_box, J + 1, endpoint=True)

    # The gaussian wavepacket as the initial wavefunction.
    psi0 = gaussian_wavepacket(x, x0=center, k=momentum, sigma=sigma)
    V_e = np.zeros_like(x)  # The externial potentials.

    # The time evolution of the Schrodinger equation.
    if initialize:
        PSI = CrankNicolson(psi0, V_e, x, dt)
    elif not initialize:
        PSI = CrankNicolson(psi_t, V_e, x, dt)

    SmallMemory().write_to_memory(node_id, memory_key, PSI)
    y = np.abs(PSI)

    return OrderedPair(x=x, y=y)

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example, the WAVEPACKET node simulates the behavior of a wavepacket in a box. The wavepacket is visualized by the LINE node, and the wavepacket is evolved through time with the use of the LOOP node.

The initial state of the WAVEPACKET node can be altered through the peak center (center), phase velocity (momentum), and width (sigma) parameters. The box can be altered with the box width (L_box) and time step (dt) parameters.

For further reading, see the Theory appendix below.