Skip to content

POPULATE

The POPULATE node generates random numbers, depending on the distribution selected and the input data.Inputs ------ default : OrderedPair|Vector Input to use as the x-axis for the random samples.Params:distribution : selectthe distribution over the random sampleslower_bound : floatthe lower bound of the output intervalupper_bound : floatthe upper bound of the output intervalnormal_mean : floatthe mean or "center" of the normal distributionnormal_standard_deviation : floatthe spread or "width" of the normal distributionpoisson_events : floatthe expected number of events occurring in a fixed time-interval when distribution is poissonReturns:out : OrderedPairx: provided from input data y: the random samples
Python Code
import random
import numpy as np
from flojoy import flojoy, OrderedPair, Vector, display
from typing import Literal, Optional


@flojoy
def POPULATE(
    default: OrderedPair | Vector,
    distribution: Literal["normal", "uniform", "poisson"] = "normal",
    lower_bound: float = 0,
    upper_bound: float = 1,
    normal_mean: float = 0,
    normal_standard_deviation: float = 1,
    poisson_events: float = 1,
) -> OrderedPair:
    """The POPULATE node generates random numbers, depending on the distribution selected and the input data.

    Inputs
    ------
    default : OrderedPair|Vector
        Input to use as the x-axis for the random samples.

    Parameters
    ----------
    distribution : select
        the distribution over the random samples
    lower_bound : float
        the lower bound of the output interval
    upper_bound : float
        the upper bound of the output interval
    normal_mean : float
        the mean or "center" of the normal distribution
    normal_standard_deviation : float
        the spread or "width" of the normal distribution
    poisson_events : float
        the expected number of events occurring in a fixed time-interval when distribution is poisson

    Returns
    -------
    OrderedPair
        x: provided from input data
        y: the random samples
    """

    if upper_bound < lower_bound:
        upper_bound, lower_bound = lower_bound, upper_bound

    seed = random.randint(1, 10000)
    my_generator = np.random.default_rng(seed)

    match default:
        case OrderedPair():
            size = len(default.x)
            x = default.x
        case Vector():
            size = len(default.v)
            x = default.v

    match distribution:
        case "uniform":
            y = my_generator.uniform(low=lower_bound, high=upper_bound, size=size)
        case "normal":
            y = my_generator.normal(
                loc=normal_mean, scale=normal_standard_deviation, size=size
            )
        case "poisson":
            y = my_generator.poisson(lam=poisson_events, size=size)

    return OrderedPair(x=x, y=y)


@display
def OVERLOAD(lower_bound, upper_bound, distribution="uniform") -> None:
    return None


@display
def OVERLOAD(normal_mean, normal_standard_deviation, distribution="normal") -> None:
    return None


@display
def OVERLOAD(poisson_events, distribution="poisson") -> None:
    return None

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example, LINSPACE is used to generate a list of 1000 samples, it is then passed into two POPULATE nodes, which randomizes the values within the list with a normal (or Gaussian) distribution and a Poisson distribution.

The distribution is then plotted with HISTOGRAM and as expected of a Gaussian distribution, the output of the HISTOGRAM node converges towards a bell curve. The Poisson distribution results in more of a step function.

The POPULATE node requires an input Vector or OrderedPair to function.